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Module-1: Riemann’s Theorem

1 Introduction

A point z = z; is called a regular point or an ordinary point of a function f(z)
if f(z) is analytic at zp, otherwise zy is called a singular point or a singularity of the
function f(z). Basically, there are two types of singularities : (i) isolated singularity; (ii)
non-isolated singularity.

Isolated Singularity

A point z = 2 is said to be an isolated singularity of a function f(z) if there exists a
deleted neighbourhood of zy in which the function is analytic. In other words, a point z =
2p is said to be an isolated singularity of a function f(z) if there exists a neighbourhood
of zp which contains no other singular point of f(z) except 2.

For the function f(z) = 1/z, z = 0is an isolated singular point, since f(z) is analytic

1

= e £ = 1,2 are isolated

in the open disc 0 <| z |< r, 7 > 0, and for g(z)
singular points since the function is analytic in the annular region 1 <| z |< 2.
Non-isolated Singularity

A point z = z is called non-isolated singularity of a function f(z) if every neighbourhood

of 2z contains at least one singularity of f(z) other than z.

For the function f(z) = Log z, the principal logarithm, z = 0 is a non-isolated
singularity, and moreover (—o0, 0] is the set of all non-isolated singularities of the function.
Also, for g(z) = 1/sin(1/z), z = 1/nm, n € I are the singular points, while 0 is non-

isolated singularity as each neighbourhood of z = 0 contains a singularity of g(z).

Isolated singularities are classified into (i) removable singularity; (ii) pole; and (iii)
essential singularity. If zo is an isolated singularity of f(z), then in some deleted neigh-

bourhood of zy the function f(z) is analytic and hence its Laurent series expansion exists
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as

f(z) = Zan(z — 20)" + an(z —20) ", 0<|z—2 |<T,
n=1

n=0
where 7 is the distance from zj to the nearest singularity of f(z) other than zj itself. If z,
is the only singularity, then r = co. The portion of the series involving negative powers
of z — zp, l.e. Y 7 by(z — 2) ™™ is called the principal part of f at zy, while the series of
non-negative powers of z — z, i.e. Y s a,(z — z9)™ is called the regular part of f at z.
Removable singularity

If all the coefficients b, in the principal part are zero, then z; is called a removable
singularity of f. In this case we can make f regular in | z — 2y |< r by suitably defining
its value at zg.

As for example, we consider the function

SS
f(z) =
0, z=0.

The function is analytic everywhere except at z = 0. The Laurent expansion about z = 0

has the form

Sin 2
f) = =
1 23 25
T
22 24

Since no negative power of z appears, the point z = 0 is a removable singularity of f.
Pole

If the principal part of f at zp contains a finite number of term, then f is said to have a
pole at zg. If b, (m > 1) is the last non-vanishing coefficient in the principal part then
we have

e b b by,
f(2) = an(z—z20)"+ ——+ ——=+ ...+
n=0

— 0<| z— <
z—20 (22— 20)? (2 — z)™’ |z =z <,

and the pole is said to be of order m. If m = 1, then we call the pole as a simple pole.
The function

22 —32+44
6 = — =5

= 34 -H+ o, (£
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has a simple pole at z = 3.

Also the function

URREED
has a pole of order 2 at z = 2, since
e 62€z72
fz) = (z—2)2  (2—2)2
e? e? e?  e?
= —+ —(z—2 o, 0<l 2 =2 < 00
oo Tt Ty Oslz o2l

Essential singularity
If the principal part of f at z; contains infinitely many nonzero terms, then z; is called
an essential singularity of f.

As for example, the function

1) = e
1

1 1
= 1l4+—-4+—+ ... +—+ ..., 0<| 2z|< o0,
z 2122 nlzn

has an essential singularity at z = 0.

Remark 1. Let us consider the expression
iﬁ+ii7 1<]z|<3.
3n zn
n=0 n=1
This expression has infinite number of negative powers of z. Even then, z = 0 is not an
essential singularity. This is because the region of convergence is not a deleted neighbour-
hood of the origin. In fact, it is the Laurent expansion of the function (I—Sﬁ n the

annular region 1 <| z |< 3. Actually, f has simple poles at z =1 and z = 3.

Alternate Definition of Removable singularity, Pole and Essential singular-
ity
A singular point zy of the function f(z) is called a removable singularity of f(z) if Zh_)ng f(2)
exists finitely. i

A singular point zy of the function f(z) is called a pole of f(z) of multiplicity n if
Zlgg (z—20)"f(z) =A #0.1f n =1, z is called a simple pole.

iA singular point zy of the function f(z) is called an essential singularity of f(z) if

there exists no finite value of n for which lim (z — zp)" f(z) = A #0.
Z—rZ0
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Theorem 1. The function f has a pole of order m at zy if and only if in some neigh-
bourhood of zy, f can be expressed as

P(2)
(z — zo)™’

where ¢(z) is analytic at zy and ¢(zo) # 0.

f(z) =

Proof. First assume that z is a pole of f of order m. Then in some neighbourhood of

20, f has a Laurent series expansion of the form

flz) = Zan(z — 2)" + an(z — 29) ", where b, # 0.
n=0 n=1
Putting v(z) = Z an(z — 20)" we see that
n=0
_ by by bm
1) = V(Z)+z—zo * (z — 20)? LR (z — z0)™
 (m)"™() (=)™ L+ by
(z —z)™
e
(z — z0)™’
where ¢(z) = (2 — 20)™v(2) + bi(z — 20)™ ' + ... + by, is analytic at z; and ¢(z) =
b # 0.
Next we assume that in some neighbourhood of z,
¢(2)
Z) = T~

where ¢(z) is analytic at zyp and ¢(zo) # 0. Expanding ¢(z) in Taylor series about zj, we

obtain
6(z) = D an(z—2)"
n=0

= ag+a1(z —20) + az(z — 20)2 + .. Fam(z— zo)m_l + Z an(z — 20)",

n=m

where ap = ¢(29) # 0. Thus

N P(2) . ap ay Am—1 - __\n-m
IO = Gap G o b Tai g T A

which is the Laurent expansion of f about zy. Since ag # 0, it follows that zy is a pole of

f of order m. This completes the proof. O



Theorem 2. (Riemann’s Theorem)
If a function f is bounded and analytic throughout a domain 0 <| z — zo |< 6, then f is

either analytic at zy or else zy 1s a removable singularity of f.

Proof. Since f is analytic throughout the domain 0 <| z — 2 |< d, f can be represented

in the Laurent series about zy of the form

[e.9]

f(z) = n(z = 20) +Zb z—2)"

n=0
Let C denote the circle | z — z | = r (< §). Then putting z — zp = re®, 0 <0 < 2w, we
obtain

1 n 27
S N GO N 7"_
2710 Jo (2 — z) " F! 21

S
3

f(zo +7e®)e™dl, n = 1,2,

Since f is bounded there exists a positive number M such that | f(2) |[< M for all z in

the given domain. Therefore,
n 27 n
r 10 inf r n
|bn|:—|/ flzo+re)e™dl | < — 27 M = Mr" forn=1,2,
2 Jy 2m
Since r can be chosen arbitrarily small, we have b, = 0 for n = 1,2, ... Thus we obtain

o]
Z%Z—Zo in0<|z—2z|<9.
n=0

This shows that f is either analytic at zg or else zy is a removable singularity of f. This

proves the theorem. O

Theorem 3. If zy is a pole of the function f, then lim f(z) = oo.

Z—20

Proof. Let zy be a pole of f of order m. Then in some neighbourhood of zy, we can write

¢(2)

(z — z9)™’

f(z) =

where ¢(z) is analytic at zo and ¢(zp) # 0. ¢(z) being analytic at zy, it is continuous at

zp. Hence, for e =1 | ¢(z) |> 0, there exists a 6 > 0 such that

| ¢(2) — d(20) | <€ =%|¢(zo)| for | z— 2 |< 4.

Therefore,

| o(2) | = |oé(z) - (Zo)+¢(zo)|>|¢(zo)|—|¢() ¢(20) |
> |¢(Zo)|—§|¢(Zo)\=§|¢(zo)| for | z—z |<o0.



L16(z »
Thus, for | z — 2z |< J, we obtain | f(2) | > 218Gl 1ot G be a positive number, however

|z—z0|™
large. Then | f(2) | > G
— >Gand | z— 2 |<,

1/m
i.e. z'f|z—zo|<(—> and | z — z |< 6,

2G
1/m
ie. if | z— 2o |< 01 where 0, :min{(|¢2(zGO) ’) , 0}
This means that lim f(z) = oo. This proves the theorem. O
Z—r20

Theorem 4. If f(2) has an isolated singularity at z = zy and f(z) — oo as z — zg, then

f(2) has a pole at z = z.

Proof. Since f(z) — oo as z — 2, for a given R > 0 there exists a § > 0 such that f(z)

is analytic for 0 <| z — zp |< ¢ and
| f(z) | > R whenever 0 <|z— z |< 0.

In particular, f(z) # 0 for 0 <| z—2zy |< ¢ and so, g(z) = 1/f(z) is analytic and bounded
by 1/R in this deleted neighbourhood of zy. Therefore by Riemann’s theorem, g(z) has

a removable singularity at zp, and we may write
g(2) = —~ =a1(z—2) +ax(z —2)*+ ..., 0<|z—2|<0.

Since g(z) # 0 for 0 <| z — 2y |< d, not all the coefficients of g(z) are zero. This means

that there is a k > 1 such that a;, is the first nonzero coefficient of g(z). Then

1
9(z) = %

= ap(z — 20)F + apy1(z — 20)" 4+ ...

so that

B S
(z = 20)Ff(2)

ag + agp1(z — 20) + . ..

— ap as z — zp,

and therefore,

1

lim (z — 20)"f(2) = — #0.
Z—20 a’k
This shows that f(z) has a pole of order k at z = zy. This proves the theorem. O



Example 1. Discuss singularities of the function

z
f(z) = 2244
Solution. We have 22 +4 = (2 +2i)(z — 2i). Therefore, f(z) has singularities at z = 2i
and z = —2i. Since
: . . 2(z — 21) 1
1 -2 =1 =—#0

f(2) has a simple pole at z = 2i. Again since,

. _ L z(z + 21) 1
Zl_l)I}’lm'(Z - 2Z)f<z) N zl—l)IP% (Z + 21)(2 — 2@) N 5 7é 0’

it follows that, f(z) has a simple pole at z = —24i.

Example 2. Classify the nature of singularity of the function

Solution. We note that z = 3 is the only singularity of f(z). To find the nature of
singularity of f(z) at z = 3, we expand f(z) in a Laurent series valid in a deleted
neighbourhood 0 <| z — 3 |< r where r is some positive number. Since

e ? 67367(273)

1&) = g = oy
L1 1 1 1

N e R e R TPy CA T ey B

f(2) has a pole of order 4 at z = 3.
Alternatively, the result follows from the fact that

lim(z — 3)*f(2) =lime™* = lg # 0.

z2—3 z—3 e



